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1. INTRODUCTION

Due to the unstable dependence of the solution on the initial data, Cauchy's
problem for elliptic equations is well known to be improperly posed in the
sense of Hadamard (cf. [2, p. 108]). Such problems arise, however, in the
study offree boundary problems (cf. [2, p. 622]), in mathematical physics and
hence attention has been focused on methods of solution that are suitable
for analytic approximation and numerical computation. We note that the
Cauchy-Kowalewski theorem is no more suitable here than it is for hyper­
bolic equations. For second-order equations in two independent variables,
the approximation problem is in satisfactory condition [1; 2, p. 623-631; 4].
However, the situation for higher order equations or equations in more than
two independent variables is not so well off from a computational viewpoint,
since the only available method is to convert an elliptic problem in only
n + 1 variables into a hyperbolic problem in no less than 2n + 1 variables
[2, p. 614-621]. In this note, we show how previous results obtained by the
author in [1] for second-order almost linear (or semilinear) equations can be
adapted to give approximation techniques for a quite general class of higher
order equations.

In [1], the equation

.1u = f(x, y, u, ux , uy ) (1.1)

was considered, with Cauchy data prescribed on a given analytic arc L.
Without loss of generality, we assumed L was the x axis. In conjugate coor­
dinates [3, 5]

z = x + iy,
and

z* = x - iy,
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(1.2)
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Eq. (1.1) became
Uzz • = F(z, z*, U, Uz , Uz.), (1.3)

with initial data prescribed on the plane z = z*. Under the assumption that
F(z, z*, gl' g2 , ga) was an analytic function of its five variables, it was shown
in [1] that S(z, z*) = Uzz• is the (unique) fixed point of a contraction mapping
in an appropriate Banach space of analytic functions, and that U could be
easily obtained from S by integration and a knowledge of the Cauchy data.
We now show how the Cauchy problem

. 8l+mLliu 8Lln-lu 8Lln-lu)
Llnu =f(x,y,u,uX,uy , ••• , 8x l 8ym ""'--ax-'~'

(1.4)
1= 0, 1,... , n; m = 0,1,... , n; 1+ m + 2j ~ 2n - 1,

( 0) () 8k u(x, 0) _ ().
u x, = f{'o X , 8yk - f{'k X ,

can be reduced to a Cauchy problem for

k = 1,2,... , 2n - 1, (1.5)

Llu = f(x, y, A1(u),... , AN(u)), (1.6)

where Ai , i = 1, 2, ... , N, are operators satisfying a certain type of Lipschitz
condition in an appropriate Banach space. This latter problem will then be
solved using techniques similar to those used in solving Cauchy's problem
for Eq. (1.1). Note that again there is no loss of generality in assuming that
the Cauchy data is prescribed along the x axis.

II. REDUCTION AND SOLUTION OF HIGHER ORDER CAUCHY PROBLEMS

In complex form, the Cauchy problem (1.4), (1.5) becomes

z = z*,

z = z*, k = 1,... ,2n - 1,

82n U ( 8PHU 82n-1U 82n-1U)
8zn 8z*n = F z, z*, U, ... , 8zP 8z*Q ,... , 8zn-1 8z*n ' 8zn 8z*n-l '

(2.1)

(2.2)
U(z, z*) = f{'o(z);

'k ( 8 8 )k U( *) _ ().
1 8z - 8z* z, z - f{'k Z ,

where U(z, z*) = u«z + z*j2, (z - z*)j2i), p = 0, 1,... , n; q = 0, 1, ... , n;
p + q ~ 2n - 1. We assume that, as a function of its first two arguments,
F(z, z*, gl ,..., gN) is holomorphic in a bicylinder 6 x 6*, where
6* = {z I z* E 6}, and as a function of its last N variables, it is holomorphic
in a sufficiently large ball about the origin. We further assume that 6 is
simply connected, contains the origin, is symmetric with respect to conju­
gation, i.e., 6 = 6*, and that f{'k(Z), k = 0, 1,... , 2n - 1, are holomorphic
in 6.
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(2.3)

We would like to emphasize that it is necessary for us to restrict ourselves
to equations of the form (1.4) in order that there do not appear any terms of
the form 8n+1 Uj8zn+l, 8n+1Uj8z*n+\ 82n-lUj8zn-2 8z*n+l etc., when Eq. (1.4)
is written in terms of conjugate coordinates. For example, our analysis is not
applicable to equations such as

(
8u 82n- 1

U )
L1nu = f x, y, u, ax ,..., 8x2n- 1 •

We note that the same type of restriction was also encountered by I. N. Vekua
[5, p. 174-228] in his study of the analytic theory of higher order linear
elliptic equations in two independent variables.

We now proceed with the reduction of the Cauchy problem (1.4), (1.5) to
the second-order operator Eq. (1.6). Let

Then

U(1)=~=lA8z 8z* 4 i.JU.

Uz = {* U(1)(z, g*) dg* + U.(z, z)
z

= {* U{l)(z, g*) dg* + Hro'(z) - ilf?I(Z)],
z

Uz* = fZ U(1)(g, z*) dg + Uz*(z, z)
z*

= J:* U(1)(g, z*) dg + ![If?o'(z) + ilf?I(Z)],

U = J:* Ug(g, z*) dg + U(z, z)

= J:* l(* U{l)(g, g*) dg* + t[lf?o'(D - irl(g)]! dg + If?o(z).

(2.4)

(2.5)

(2.6)

(2.7)

By using Eqs. (2.4)-(2.7), 8PHUj8z P 8z*q, for p = 0, 1,... , n; q = 0, 1,... , n;
p + q ~ 2n - 1, can all be computed in terms of a linear combination of
8PH U(1)j8z P 8z*Q and its integrals, p = 0, 1,.", n - 1; q = 0,1,... , n - 1;
P + q ~ 2n - 3. Furthermore, Eqs. (2.4) and (1.5) allow 8k u(I)(X,0)j8y k,

k = 1,2,... , 2n - 3, to be computed in terms of the Cauchy data for u.
Hence we are led to the following Cauchy problem for U(l):

82n- 2U(I) _ * (1) (1) (l)( (1»)
8zn- 1 8z*n-l - F(z, z , Al (U ), ... , AN U , (2.8)

U(1)(z, z*) = If?~I)(Z);

8 8 k;k ( ) U(l)(z z*) = m(1)(z)·
8z 8z* ' Tk'

z = z*,
(2.9)

z = z*, k = 1, 2,... , 2n - 3,
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where A?), i = 1,2,... , N, are integral operators on HB into HB,
HB == HB(Llp, Llp*) being the Banach space of functions of two complex
variables which are holomorphic and bounded in

Llp x Llp*,

with norm

Llp = {z I I z I < p}, Llp* = {z I z* E Llp},

118!1 = sup I8(z, z*)I.
L1pXLlp*

(2.10)

More precisely, Ail) is defined by Eq. (2.7), A~I) by Eq. (2.6), A~I) by Eq. (2.5),
and A?), i > 3, is obtained by repeated differentiation of Eq. (2.5) or (2.6).
It is easily seen that each A~I), i = I,... , N, satisfies the condition

il A~I)(U~I) - A~I)(U~I»II

1
(1)

II
oTiHUI(I) oTi+aU

2
(I)

~ M,lI) II U1(I) U II + + II +2, ... ozP oz*q - ozP oz*q ...

II
02n-3U(I) 02n-3U(I) II II 02n-3U(I) 02n-3U(I) III

+ OZn-2 oz;n-I - OZn-2 oz:n-I + OZn-I oz~n-2 - OZn-I oz:n-2 \

(2.11)

for some positive constant M:1). Repeating this process n - 1 times, we are
led to a Cauchy problem of the form

(2.12)

z = z*,

where

u(n-I)(Z, z*) = ep~n-I)(z);

. ( oUfn-I) oUfn-I) )
I - = epln-l)(z)'

OZ oz* 1 '

02Ufn-2)
u(n-1)(Z Z*) = ----;0-----::--.-

, 8z 8z*

z = Z*,
(2.13)

(2.14)

and A~n-I), i = 1,... , N, are integral operators on HB into HB which satisfy
the condition

+ II oU~n-I) _ ou~n-I) III
8z* oz* \

(2.15)

for some positive constant Mt-I
).

We note that the operators A~k), i = 1,... , N, k = 1,... , n - 1, all turn out
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to be integral operators satisfying a condition such as (2.11), due to the fact
that we restricted ourselves to a rather special class of semilinear equations.
For equations not of the form (1.4) (e.g., Eq. (2.3», the operator A~k) would
fail to satisfy such conditions for k > ko , where ko is some integer less than
n - 1.

We now proceed to use the contraction mapping principle to find a solution
of Eqs. (2.12), (2.13). By hypothesis, F is holomorphic in a compact subset
of the space of N + 2 complex variables and, hence, from Schwarz's lemma
for functions of several complex variables [3, p. 38], a Lipschitz condition
holds there with respect to the last N arguments, i.e.,

where Co is a positive constant. Hence, by (2.15) and (2.16), there exists a
positive constant C1 such that

II F(z, z*, A~n-I)(U~n-I»,... , At'-I)(U~n-I»)

- F(z, z*, A~n-I)(U~n-I»),... , At'-I)(U~n-I»))II

\ oU(n-l)
:(; C1 I" U~n-l) - U~n-l) II + II ~z

II
oU~n-l) _ ou(n-l) III

+ oz* oz* \.

_ OU~:-l) II

(2.17)

It should be noted that Aln-l) are in fact integral operators on uin-l) and
its derivatives with respect to z and z*, i.e. Aln-l)(Uin- l) - Aln-I)(Uin-l),
8Uin- I)/8z, 8Uin- I)/8z*).

Now define the operators Bi , i = 1,2,3, by

s(z, z*) = U~:;I)(Z, z*), (2.18)

B1(s) - u<n-l)(z, z*) = J: J:* s(g, g*) de dg + J: y(g) dg

+ J:* if1(g*) dg* + g;~n-l)(O), (2.19)

B2(s) - U~n-l)(z, z*) = f:* s(z, g*) dg* + y(z), (2.20)

BaCs) = U~~-I)(Z, z*) = Fs(g, z*) dg + if1(z*), (2.21)
o



where [1]
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1 d (n-1)( ) z

tj;(z) = "2 [ CPodz z + iCPin- 1 )(z)] - f0 s(g, z) dg.
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(2.22)

(2.23)

Finding a solution to the Cauchy problem (2.12), (2.13) is now equivalent
to finding a fixed point in the Banach space HB of the operator T : HB --+ HB,
defined by

(2.24)

For a given a, 0 ~ a < 1, and p sufficiently small, it is easily seen from
Eqs. (2.18)-(2.23) that

Hence, from Eqs. (2.17) and (2.24), we have

II TS1 - Ts211 ~ a II Sl - S2 II
and

i = 1,2,3. (2.25)

(2.26)

II Ts II ~ a II s II + II To II ~ II s II + (1 - a) Mo , (2.27)

for some positive constant M o . Hence, if II s II < M o, then II Ts II < M o , i.e.,
T is a contraction mapping of a closed ball of HB into itself. Hence T has a
(unique) fixed point s(z, z*) and, therefore, Eqs. (2.19), (2.22), (2.23) give the
solution U cn- 1)(z, z*) to (2.12), (2.13). Now, refering back to Eqs. (2.7) and
(2.14), we see that

Hence, from a knowledge of u<n-ll(z, z*), we immediately obtain the
solution U(z, z*) to our original Cauchy problem (2.1), (2.2), by a series of
quadratures.

THEOREM. There exists a constructive procedure, suitable for analytic
approximations, for solving the Cauchy problem (1.4), (1.5). Such a procedure
is given explicitly by (2.1)-(2.28).

It is important to note that the unstable dependence of the solution of the
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elliptic Eq. (1.4) on the (real) Cauchy data (1.5) appears exclusively in the
step where this data is extended to complex values of the independent
variable x. When this can be done in an elementary way, for example, by
direct substitution via the transformation (1.2), no instabilities will occur
when one uses the contraction mapping operator Tto obtain approximations
to the desired solution.

We finally note that if equation (1.4) is linear and one uses exponential
majorization (c.f. [1], [3]), then the above techniques yield global solutions
to Cauchy's problem. In particular if the norm (2.10) is taken over 6 X 6*
instead of LJp X LJp*, we obtain an extension of Henrici's theorem ([4],
p. 196) to higher order elliptic equations.
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